Automatic Detection of Phytophthora pluvialis Outbreaks in Radiata Pine Plantations Using Multi-Scene, Multi-Temporal Satellite Imagery

Author:

Camarretta Nicolò1ORCID,Pearse Grant D.12ORCID,Steer Benjamin S. C.1ORCID,McLay Emily1,Fraser Stuart1,Watt Michael S.3ORCID

Affiliation:

1. Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand

2. College of Science and Engineering, Flinders University, Sturt Rd, Bedford Park 5042, Australia

3. Scion, 10 Kyle Street, Christchurch 8011, New Zealand

Abstract

This study demonstrates a framework for using high-resolution satellite imagery to automatically map and monitor outbreaks of red needle cast (Phytophthora pluvialis) in planted pine forests. This methodology was tested on five WorldView satellite scenes collected over two sites in the Gisborne Region of New Zealand’s North Island. All scenes were acquired in September: four scenes were acquired yearly (2018–2020 and 2022) for Wharerata, while one more was obtained in 2019 for Tauwhareparae. Training areas were selected for each scene using manual delineation combined with pixel-level thresholding rules based on band reflectance values and vegetation indices (selected empirically) to produce ‘pure’ training pixels for the different classes. A leave-one-scene-out, pixel-based random forest classification approach was then used to classify all images into (i) healthy pine forest, (ii) unhealthy pine forest or (iii) background. The overall accuracy of the models on the internal validation dataset ranged between 92.1% and 93.6%. Overall accuracies calculated for the left-out scenes ranged between 76.3% and 91.1% (mean overall accuracy of 83.8%), while user’s and producer’s accuracies across the three classes were 60.2–99.0% (71.4–91.8% for unhealthy pine forest) and 54.4–100% (71.9–97.2% for unhealthy pine forest), respectively. This work demonstrates the possibility of using a random forest classifier trained on a set of satellite scenes for the classification of healthy and unhealthy pine forest in new and completely independent scenes. This paves the way for a scalable and largely autonomous forest health monitoring system based on annual acquisitions of high-resolution satellite imagery at the time of peak disease expression, while greatly reducing the need for manual interpretation and delineation.

Funder

Forest Growers Levy Trust

New Zealand Ministry for Business Innovation and Employment

Scion, the New Zealand Forest Research Institute Ltd.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3