Inter-Domain Invariant Cross-Domain Object Detection Using Style and Content Disentanglement for In-Vehicle Images

Author:

Jiang Zhipeng1ORCID,Zhang Yongsheng1,Wang Ziquan1ORCID,Yu Ying1,Zhang Zhenchao1ORCID,Zhang Mengwei1,Zhang Lei1,Cheng Binbin1

Affiliation:

1. School of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

Abstract

The accurate detection of relevant vehicles, pedestrians, and other targets on the road plays a crucial role in ensuring the safety of autonomous driving. In recent years, object detectors based on Transformers or CNNs have achieved excellent performance in the fully supervised paradigm. However, when the trained model is directly applied to unfamiliar scenes where the training data and testing data have different distributions statistically, the model’s performance may decrease dramatically. To address this issue, unsupervised domain adaptive object detection methods have been proposed. However, these methods often exhibit decreasing performance when the gap between the source and target domains increases. Previous works mainly focused on utilizing the style gap to reduce the domain gap while ignoring the content gap. To tackle this challenge, we introduce a novel method called IDI-SCD that effectively addresses both the style and content gaps simultaneously. Firstly, the domain gap is reduced by disentangling it into the style gap and content gap, generating corresponding intermediate domains in the meanwhile. Secondly, during training, we focus on one single domain gap at a time to achieve inter-domain invariance. That is, the content gap is tackled while maintaining the style gap, and vice versa. In addition, the style-invariant loss is used to narrow down the style gap, and the mean teacher self-training framework is used to narrow down the content gap. Finally, we introduce a multiscale fusion strategy to enhance the quality of pseudo-labels, which mainly focus on enhancing the detection performance for extreme-scale objects (very large or very small objects). We conduct extensive experiments on four mainstream datasets of in-vehicle images. The experimental results demonstrate the effectiveness of our method and its superiority over most of the existing methods.

Funder

National Natural Science Foundation of China

Song Shan Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3