The Improved U-STFM: A Deep Learning-Based Nonlinear Spatial-Temporal Fusion Model for Land Surface Temperature Downscaling

Author:

Guo Shanxin12ORCID,Li Min12,Li Yuanqing3,Chen Jinsong12ORCID,Zhang Hankui K.4ORCID,Sun Luyi12ORCID,Wang Jingwen12,Wang Ruxin1,Yang Yan5

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. Shenzhen Engineering Laboratory of Ocean Environmental Big Data Analysis and Application, Shenzhen 518055, China

3. Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

4. Geospatial Sciences Center of Excellence, Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57007, USA

5. Big Data Center of Geospatial and Natural Resources of Qinghai Province, Xining 810000, China

Abstract

The thermal band of a satellite platform enables the measurement of land surface temperature (LST), which captures the spatial-temporal distribution of energy exchange between the Earth and the atmosphere. LST plays a critical role in simulation models, enhancing our understanding of physical and biochemical processes in nature. However, the limitations in swath width and orbit altitude prevent a single sensor from providing LST data with both high spatial and high temporal resolution. To tackle this challenge, the unmixing-based spatiotemporal fusion model (STFM) offers a promising solution by integrating data from multiple sensors. In these models, the surface reflectance is decomposed from coarse pixels to fine pixels using the linear unmixing function combined with fractional coverage. However, when downsizing LST through STFM, the linear mixing hypothesis fails to adequately represent the nonlinear energy mixing process of LST. Additionally, the original weighting function is sensitive to noise, leading to unreliable predictions of the final LST due to small errors in the unmixing function. To overcome these issues, we selected the U-STFM as the baseline model and introduced an updated version called the nonlinear U-STFM. This new model incorporates two deep learning components: the Dynamic Net (DyNet) and the Chang Ratio Net (RatioNet). The utilization of these components enables easy training with a small dataset while maintaining a high generalization capability over time. The MODIS Terra daytime LST products were employed to downscale from 1000 m to 30 m, in comparison with the Landsat7 LST products. Our results demonstrate that the new model surpasses STARFM, ESTARFM, and the original U-STFM in terms of prediction accuracy and anti-noise capability. To further enhance other STFMs, these two deep-learning components can replace the linear unmixing and weighting functions with minor modifications. As a deep learning-based model, it can be pretrained and deployed for online prediction.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Fundamental Research Foundation of Shenzhen Technology and Innovation Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3