Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology

Author:

Zhao Shufen12ORCID,Zeng Runqiang12ORCID,Zhang Zonglin12ORCID,Meng Xingmin12,Qi Tianjun12,Long Zhao12,Guo Weiwei12,Si Guojun12

Affiliation:

1. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

2. Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, Lanzhou 730000, China

Abstract

The China–Nepal Transportation Corridor is vital to the country’s efforts to build a land trade route in South Asia and promote the Ring-Himalayan Economic Cooperation Belt. Due to the complex geological structure and topographical environment of the Qinghai–Tibet Plateau, coupled with the impact of climate change, the frequent occurrence of geological disasters has increased the operational difficulty of the China–Nepal Highway and the construction difficulty of the China–Nepal Railway. However, to date, there has been no systematic study of the spatial distribution of landslides along the entire route within the area, the factors influencing landslides at different scales, or the causes of landslides under different topographic backgrounds. There is an even greater lack of research on areas threatened by potential landslides. This study comprehensively applies remote sensing, mathematical statistics, and machine learning methods to map landslides along the China–Nepal transportation corridor, explore the influencing factors and causes of different types of landslides, and investigate the distribution characteristics of potential landslides. A total of 609 historic landslides have been interpreted in the study area and were found to be distributed along faults and locally concentrated. The strata from which landslides develop are relatively weak and are mainly distributed within 2 km of a fault with a slope between 20° and 30°. The direction of slope for the majority of landslides is south to south-west, and their elevation is between 4000 and 5000 m. In addition, we discovered a power law relationship between landslide area and volume (VL = 2.722 × AL1.134) and determined that there were 47 super-large landslides, 213 large landslides, and 349 small and medium-sized landslides in the area, respectively. Slope is the most significant influencing factor for the development of landslides in the area. Apart from slope, faults and strata significantly influence the development of large and medium-small landslides, respectively. We have identified 223 potential landslides in the region, 15 of which directly threaten major transport routes, mainly in the Renbu Gorge section of the China–Nepal Highway and the proposed China–Nepal Railway section from Peikucuo to Gyirong County. In addition, we also discussed the causes of landslides within three geomorphic units in the region. First, the combined effects of faulting, elevation, and relatively weak strata contribute to the development of super-large and large landslides in the Gyirong basin and gorge. Second, the relatively weak strata and the cumulative damaging effects of earthquakes promote the development of small and medium-sized landslides in the Xainza-Dinggye rift basin. Third, under the combined effect of the hanging wall effect of thrust faults and the relatively weak material composition, landslides of various types have developed in the Nagarzê mountain. It is worth noting that potential landslides have developed in all three geomorphic units mentioned above. This study provides data and theory to assist in the accurate mitigation and control of landslide hazards in the corridor.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Central Guiding Local Science and Technology Development Fund Projects

Key R&D Program of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3