Assessing and Improving the Accuracy of Visible Infrared Imaging Radiometer Suite Ocean Color Products in Environments with High Solar Zenith Angles

Author:

Li Hao1ORCID,He Xianqiang23,Shanmugam Palanisamy4,Bai Yan23,Wang Difeng2ORCID,Li Teng2,Gong Fang2

Affiliation:

1. Donghai Laboratory, Zhoushan 316021, China

2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

3. School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China

4. Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

Utilizing in situ measurement data to assess satellite-derived long-term ocean color products under different observational conditions is crucial for ensuring data quality and integrity. In this study, we conducted an extensive evaluation and analysis of Visible Infrared Imaging Radiometer Suite (VIIRS) remote sensing reflectance (Rrs) products using long-term OC-CCI in situ data from 2012 to 2021. Our research findings indicate that, well beyond its designed operational lifespan, the root mean square difference accuracy of VIIRS Rrs products across most spectral bands remains superior to 0.002 (sr−1). However, VIIRS Rrs products in shorter wavelength bands (e.g., at 412 nm) have exhibited significantly lower accuracy and a long-term bias in recent years. The annual precision of VIIRS Rrs products demonstrated a declining trend, particularly in coastal or eutrophic waters. This degradation in accuracy highlights the imperative for continuous monitoring of VIIRS performance and further advancements in the atmospheric correction algorithm, especially to address satellite records at high solar zenith angles (SZAs) and observation zenith angles (OZAs). Our analysis indicates that, in observation environments with high SZAs (greater than 70°), the accuracy of VIIRS Rrs products has declined by nearly 50% compared to typical solar zenith angle observation conditions. To address the challenge of declining accuracy under large observation geometries, we introduced the neural network atmospheric correction model (NN-V). Developed based on meticulously curated VIIRS products, the NN-V model exhibits outstanding performance in handling VIIRS data in conditions of extensive observation geometries. During the winter season in high-latitude marine regions, the NN-V model demonstrates a remarkable enhancement in ocean color product coverage, achieving an increase of nearly 20 times compared to traditional methods.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

“Pioneer” R&D Program of Zhejiang

Science Foundation of Donghai Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3