Slope Stability Analysis and Soil Mechanical Properties of Impact Craters around the Lunar South Pole

Author:

Huang Yantong12,Zhang Jiang1ORCID,Li Bo1,Chen Shengbo2

Affiliation:

1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264200, China

2. College of Geoexploration Science and Technology, Jilin University, Changchun 130000, China

Abstract

Water ice has been found in the permanently shadowed regions of impact craters around the lunar South Pole, which makes them ideal areas for in situ exploration missions. However, near the rim of impact craters, construction and exploration activities may cause slope instability. As a result, a better understanding of the shear strength of lunar soil under higher stress conditions is required. This paper mainly uses the finite element method to analyze slope stability to determine the position and shape of the slip surface and assess the safety factor. The height and gradient of the slope, the shear strength of lunar soil, and the lunar surface mission all influence the stability of the slope. We also analyze the soil mechanical properties of a soil slope adjacent to the traverse path of the Chang’E-4 Yutu-2 rover. Determining the stability of the slope at the lunar South Pole impact crater under various loading conditions will enhance the implementation of the lunar surface construction program. In this respect, this paper simulates a lunar mission landing at the Shackleton and Shoemaker craters and indicates that areas with higher cohesion lunar soil may be more stable for exploration in the more complex terrain of the South Pole.

Funder

National Key Research and Development Project

National Natural Science Foundation

Shandong Provincial Natural Science Foundation

Strategic Leading Science and Technology Special Project of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3