Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data

Author:

Li Yichen12ORCID,Yu Chao1ORCID,Tao Jinhua1,Lu Xiaoyan3,Chen Liangfu12

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Guangxi Ecological and Environmental Monitoring Center, Nanning 530028, China

Abstract

O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio (HCHO/NO2 ratio)), provide an effective way to identify ozone pollution control areas on a large geographical scale due to their simple acquisition of datasets. This can help determine the primary factors contributing to O3 pollution and assist in managing it. Based on TROPOMI data from May 2018 to December 2022, combined with ground-based monitoring data from the China National Environmental Monitoring Centre, we explored the uncertainty associated with using the HCHO/NO2 ratio (FNR) as an indicator in ozone control area determination. We focused on the four representative regions in China: Jing-Jin-Ji-Lu-Yu (JJJLY), Jiang-Zhe-Hu-Wan (JZHW), Chuan-Yu (CY), and South China. By using the statistical curve-fitting method, we found that the FNR thresholds were 3.5–5.1, 2.0–4.0, 2.5–4.2, and 1.7–3.5, respectively. Meanwhile, we analyzed the spatial and temporal characteristics of the HCHO, NO2, and O3 control areas. The HCHO concentrations and NO2 concentrations had obvious cyclical patterns, with higher HCHO column densities occurring in summer and higher NO2 concentrations in winter. These high values always appeared in areas with dense population activities and well-developed economies. The distribution characteristics of the ozone control areas indicated that during O3 pollution periods, the urban areas with industrial activities and high population densities were primarily controlled by VOCs, and the suburban areas gradually shifted from VOC-limited regimes to transitional regimes and eventually reverted back to VOC-limited regimes. In contrast, the rural and other remote areas with relatively less development were mainly controlled by NOx. The FNR also exhibited periodic variations, with higher values mostly appearing in summer and lower values appearing in winter. This study identifies the main factors contributing to O3 pollution in different regions of China and can serve as a valuable reference for O3 pollution control.

Funder

National Key Research and Development Program of China

Guangxi Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3