A Comparative Analysis of Characteristics and Synoptic Backgrounds of Extreme Heat Events over Two Urban Agglomerations in Southeast China

Author:

Sun Xiaoyan,Gao Xiaoyu,Luo Yali,Wong Wai-KinORCID,Xu HaimingORCID

Abstract

Based on high-resolution surface observation and reanalysis data, this paper analyzes the extreme heat events (EHEs) over two densely populated urban agglomerations in southeast China, namely the Yangtze River Delta (YRD) and the Pearl River Delta (PRD), including the spatial–temporal distribution of heatwaves and warm nights and the synoptic backgrounds for regional heatwaves. The results show that the occurrence frequency of EHEs is modulated significantly by local underlying features (i.e., land–sea contrast, terrain), and the strong nocturnal urban heat island effects make warm nights much more likely to occur in cities than rural areas during heatwaves. About 80% of the YRD regional heatwaves occur from 15 July to 15 August, while a lower fraction (53%) of the PRD heatwaves is found during this mid-summer period, which partially explains the warm-season average intensity of the former being 2–3 times the latter. A persistent, profound subtropical high is the dominant synoptic system responsible for the mid-summer YRD heatwaves, which forces significant descending motion leading to long-duration sunny weather. The mid-summer PRD heatwaves involve both high-pressure systems and tropical cyclones (TCs). A TC is present to the east of the PRD region on most (about 72%) PRD heatwave days. The organized northerly winds in the planetary boundary layer in the outer circulation of the TC transport the inland warm air, which is heated by the foehn effect at the lee side of the Nanling Mountains and possibly also the surface sensible heat flux, towards the PRD region, leading to the occurrence of the extremely high temperatures.

Funder

Guangdong Major Project of Basic and Applied Basic Research

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference52 articles.

1. Global risk of deadly heat;Mora;Nat. Clim. Chang.,2017

2. Diaz, H., and Murnane, R. (2008). Climate Extremes and Society, Cambridge University Press.

3. The recent bushfires and extreme heatwave in southeast Australia;Karoly;Bull. Aust. Meteorol. Oceanogr. Soc.,2009

4. Dramatically increasing chance of extremely hot summers since the 2003 European heat wave;Christidis;Nat. Clim. Chang.,2015

5. (2022, November 07). IPCC AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3