Nonlinear Cooling Effect of Street Green Space Morphology: Evidence from a Gradient Boosting Decision Tree and Explainable Machine Learning Approach

Author:

Liu ZiyiORCID,Ma Xinyao,Hu Lihui,Liu Yong,Lu Shan,Chen Huilin,Tan Zhe

Abstract

Mitigation of the heat island effect is critical due to the frequency of extremely hot weather. Urban street greening can achieve this mitigation and improve the quality of urban spaces and people’s welfare. However, a clear definition of street green space morphology is lacking, and the nonlinear mechanism of its cooling effect is still unclear; the interaction between street green space morphology and the surrounding built environment has not been investigated. This study used machine learning, deep learning, and computer vision methods to predict land surface temperature based on street green space morphology and the surrounding built environment. The performances of the XGBoost, LightGBM, and CatBoost models were then compared, and the nonlinear cooling effects offered by the street green space morphology were analyzed using the Shapley method. The results show that streets with a high level of green environment exposure (GVI > 0.4, NDVI > 4) can accommodate more types of green space morphology while maintaining the cooling effect. Additionally, the proportion of vegetation with simple geometry (FI < 0.2), large leaves (FD < 0.65), light-colored leaves (CSI > 13), and high leaf density (TDE > 3) should be increased in streets with a low level of green environment exposure (GVI < 0.1, NDVI < 2.5). Meanwhile, streets with highly variable building heights (AFI > 1.5) or large areas covered by buildings (BC > 0.3) should increase large leaf vegetation (FD < 0.65) while decreasing dark leaf vegetation (CSI < 13). The study uses machine learning methods to construct a nonlinear cooling benefit model for street green space morphology, proposes design recommendations for different street green spaces that consider climate adaptation, and provides a reference for urban thermal environment regulation.

Funder

Zhejiang Provincial Philosophy and Social Sciences Youth Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3