Abstract
Mobile ad hoc networks (MANETs) play a highly significant role in the Internet of Things (IoT) for managing node mobility. MANET opens the pathway for different IoT-based communication systems with effective abilities for a variety of applications in several domains. In IoT-based systems, it provides the self-formation and self-connection of networks. A key advantage of MANETs is that any device or node can freely join or leave the network; however, this makes the networks and applications vulnerable to security attacks. Thus, authentication plays an essential role in protecting the network or system from several security attacks. Consequently, secure communication is an important prerequisite for nodes in MANETs. The main problem is that the node moving from one group to another may be attacked on the way by misleading the device to join the neighboring group. To address this, in this paper, we present an authentication mechanism based on image hashing where the network administrator allows the crosschecking of the identity image of a soldier (i.e., a node) in the joining group. We propose the node joining and node migration algorithms where authentication is involved to ensure secure identification. The simulation tool NS-2 is employed to conduct extensive simulations for extracting the results from the trace files. The results demonstrate the effectiveness of the proposed scheme based on the memory storage communication overhead and computational cost. In our scheme, the attack can be detected effectively and also provides a highly robust assurance.
Subject
Computer Networks and Communications
Reference28 articles.
1. Recent Trends and Advances in Wireless and IoT-Enabled Networks;Jan,2019
2. Perceptual hashing for image authentication: A survey
3. A Validation Method for AdHoc Network Simulation Including MANETs, VANETs and Emergency Scenarios;Leite,2019
4. Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献