Abstract
Zipf’s law is well known in linguistics: the frequency of a word is inversely proportional to its rank. This is a special case of a more general power law, a common phenomenon in many kinds of real-world statistical data. Here, it is shown that snooker statistics also follow such a mathematical pattern, but with varying parameter values. Two types of rankings (prize money earned and centuries scored), and three different time frames (all-time, decade, and year) are considered. The results indicate that the power law parameter values depend on the type of ranking used, as well as the time frame considered. Furthermore, in some cases, the resulting parameter values vary significantly over time, for which a plausible explanation is provided. Finally, it is shown how individual rankings can be described somewhat more accurately using a log-normal distribution, but that the overall conclusions derived from the power law analysis remain valid.
Reference23 articles.
1. The Psychobiology of Language;Zipf,1935
2. Human Behavior and the Principle of Least Effort;Zipf,1949
3. Zipf’s word frequency law in natural language: A critical review and future directions
4. Les Inégalités Économiques;Gibrat,1931
5. Power laws, Pareto distributions and Zipf's law
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献