A Bootstrap Method for a Multiple-Imputation Variance Estimator in Survey Sampling

Author:

Yu LiliORCID,Zhao Yichuan

Abstract

Rubin’s variance estimator of the multiple imputation estimator for a domain mean is not asymptotically unbiased. Kim et al. derived the closed-form bias for Rubin’s variance estimator. In addition, they proposed an asymptotically unbiased variance estimator for the multiple imputation estimator when the imputed values can be written as a linear function of the observed values. However, this needs the assumption that the covariance of the imputed values in the same imputed dataset is twice that in the different imputed datasets. In this study, we proposed a bootstrap variance estimator that does not need this assumption. Both theoretical argument and simulation studies show that it was unbiased and asymptotically valid. The new method was applied to the Hox pupil popularity data for illustration.

Publisher

MDPI AG

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-source Data Fusion Method of Equipment Maintainability Based on Improved DS Evidence Theory;2023 5th International Conference on System Reliability and Safety Engineering (SRSE);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3