Complex Residual Attention U-Net for Fast Ultrasound Imaging from a Single Plane-Wave Equivalent to Diverging Wave Imaging

Author:

Bentaleb Ahmed1ORCID,Sintes Christophe1,Conze Pierre-Henri1ORCID,Rousseau François1,Guezou-Philippe Aziliz1ORCID,Hamitouche Chafiaa1

Affiliation:

1. Département Image et Traitement de l’Information, Institue Mines-Télécom (IMT) Atlantique, 29200 Brest, France

Abstract

Plane wave imaging persists as a focal point of research due to its high frame rate and low complexity. However, in spite of these advantages, its performance can be compromised by several factors such as noise, speckle, and artifacts that affect the image quality and resolution. In this paper, we propose an attention-based complex convolutional residual U-Net to reconstruct improved in-phase/quadrature complex data from a single insonification acquisition that matches diverging wave imaging. Our approach introduces an attention mechanism to the complex domain in conjunction with complex convolution to incorporate phase information and improve the image quality matching images obtained using coherent compounding imaging. To validate the effectiveness of this method, we trained our network on a simulated phased array dataset and evaluated it using in vitro and in vivo data. The experimental results show that our approach improved the ultrasound image quality by focusing the network’s attention on critical aspects of the complex data to identify and separate different regions of interest from background noise.

Publisher

MDPI AG

Reference31 articles.

1. Time-resolved pulsed elastography with ultrafast ultrasonic imaging;Sandrin;Ultrason. Imaging,1999

2. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming;Hasegawa;J. Med. Ultrason.,2011

3. Trees, H. (2002). Optimum Array Processing—Part IV of Detection, Estimation, and Modulation Theory, Wiley.

4. So you think you can DAS? A viewpoint on delay-and-sum beamforming;Perrot;Ultrasonics,2021

5. Pereira, F., Burges, C., Bottou, L., and Weinberger, K. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, Curran Associates, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3