Detection Strategies for COM, WMI, and ALPC-Based Multi-Process Malware

Author:

Portase Radu Marian12ORCID,Muntea Andrei Marius12,Mermeze Andrei12,Colesa Adrian12ORCID,Sebestyen Gheorghe1ORCID

Affiliation:

1. Computer Science Department, Technical University of Cluj Napoca, 400114 Cluj Napoca, Romania

2. Bitdefender, 060071 Bucharest, Romania

Abstract

Behavioral malware detection is based on attributing malicious actions to processes. Malicious processes may try to hide by changing the behavior of other benign processes to achieve their goals. We showcase how Component Object Model (COM) and Windows Management Instrumentation (WMI) can be used to create such spoofing attacks. We discuss the internals of COM and WMI and Asynchronous Local Procedure Call (ALPC). We present multiple functional monitoring techniques to identify the spoofing and discuss the strong and weak points of each technique. We create a robust process monitoring system that can correctly identify the source of malicious actions spoofed via COM, WMI and ALPC with a low performance impact. Finally, we discuss how malicious actors use COM, WMI and ALPC by examining real-world malware detected by our monitoring system.

Publisher

MDPI AG

Reference69 articles.

1. Miloslavskaya, N. (2016, January 22–24). Security Operations Centers for Information Security Incident Management. Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria.

2. The Operational Role of Security Information and Event Management Systems;Bhatt;IEEE Secur. Priv.,2014

3. Chuvakin, A. (2024, June 15). Named: Endpoint Threat Detection & Response. Available online: https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/.

4. Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. (2008). Learning and Classification of Malware Behavior. Detection of Intrusions and Malware, and Vulnerability Assessment, Springer.

5. Microsoft (2024, June 15). MSDN: Component Object Model. Available online: https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3