Two-Dimensional Plasma Soft X-ray Radiation Imaging System: Optimization of Amplification Stage Based on Gas Electron Multiplier Technology

Author:

Malinowski Karol1ORCID,Chernyshova Maryna1,Jabłoński Sławomir1ORCID,Czarski Tomasz1,Wojeński Andrzej2ORCID,Kasprowicz Grzegorz2ORCID

Affiliation:

1. Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland

2. Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract

The objective of the proposed research is to develop plasma soft X-ray (SXR) radiation imaging that includes spectral information in addition to standard SXR tomography for the purpose of studying, for example, tungsten transport and its interplay with magnetohydrodynamics (MHD) in tokamak plasmas in an ITER-relevant approach. The SXR radiation provides valuable information about both aspects, particularly when measured with high spatial and temporal resolution and when tomographic reconstructions are performed. The spectral data will facilitate the tracking of both light and high-Z impurities. This approach is pertinent to both the advancement of a detailed understanding of physics and the real-time control of plasma, thereby preventing radiative collapses. The significance of this development lies in its ability to provide three-dimensional plasma tomography, a capability that extends beyond the scope of conventional tomography. The utilization of two-dimensional imaging capabilities inherent to Gas Electron Multiplier (GEM) detectors in a toroidal view, in conjunction with the conventional poloidal tomography, allows for the acquisition of three-dimensional information, which should facilitate the study of, for instance, the interplay between impurities and MHD activities. Furthermore, this provides a valuable opportunity to investigate the azimuthal asymmetry of tokamak plasmas, a topic that has rarely been researched. The insights gained from this research could prove invaluable in understanding other toroidal magnetically confined plasmas, such as stellarators, where comprehensive three-dimensional measurements are essential. To illustrate, by attempting to gain access to anisotropic radiation triggered by magnetic reconnection or massive gas injections, such diagnostics will provide the community with enhanced experimental tools to understand runaway electrons (energy distribution and spatial localization) and magnetic reconnection (spatial localization, speed…). This work forms part of the optimization studies of a detecting unit proposed for use in such a diagnostic system, based on GEM technology. The detector is currently under development with the objective of achieving the best spatial resolution feasible with this technology (down to approximately 100 µm). The diagnostic design focuses on the monitoring of photons within the 2–15 keV range. The findings of the optimization studies conducted on the amplification stage of the detector, particularly with regard to the geometrical configuration of the GEM foils, are presented herein. The impact of hole shape and spacing in the amplifying foils on the detector parameters, including the spatial size of the avalanches and the electron gain/multiplication, has been subjected to comprehensive numerical analysis through the utilization of Degrad (v. 3.13) and Garfield++ (v. bd8abc76) software. The results obtained led to the identification of two configurations as the most optimal geometrical configurations of the amplifying foil for the three-foil GEM system for the designed detector. The first configuration comprises cylindrical holes with a diameter of 70 μm, while the second configuration comprises biconical holes with diameters of 70/50/70 μm. Both configurations had a hole spacing of 120 μm.

Funder

National Science Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3