The Revised Curve Number Rainfall–Runoff Methodology for an Improved Runoff Prediction

Author:

Lee Kenneth Kai Fong1,Ling Lloyd1ORCID,Yusop Zulkifli2ORCID

Affiliation:

1. Centre of Disaster Risk Reduction (CDRR), Lee Kong Chian Faculty of Engineering & Science, Civil Engineering Department of Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Malaysia

2. Centre for Environmental Sustainability and Water Security, Universiti Teknologi Malaysia, Skudai 81310, Malaysia

Abstract

The Curve Number (CN) rainfall–runoff model is a widely used method for estimating the amount of rainfall and runoff, but its accuracy in predicting runoff has been questioned globally due to its failure to produce precise predictions. The model was developed by the United States Department of Agriculture (USDA) and Soil Conservation Services (SCS) in 1954, but the data and documentation about its development are incomplete, making it difficult to reassess its validity. The model was originally developed using a 1954 dataset plotted by the USDA on a log–log scale graph, with a proposed linear correlation between its two key variables (Ia and S), given by Ia = 0.2S. However, instead of using the antilog equation in the power form (Ia = S0.2) for simplification, the Ia = 0.2S correlation was used to formulate the current SCS-CN rainfall–runoff model. To date, researchers have not challenged this potential oversight. This study reevaluated the CN model by testing its reliability and performance using data from Malaysia, China, and Greece. The results of this study showed that the CN runoff model can be formulated and improved by using a power correlation in the form of Ia = Sλ. Nash–Sutcliffe model efficiency (E) indexes ranged from 0.786 to 0.919, while Kling–Gupta Efficiency (KGE) indexes ranged from 0.739 to 0.956. The Ia to S ratios (Ia/S) from this study were in the range of [0.009, 0.171], which is in line with worldwide results that have reported that the ratio is mostly 5% or lower and nowhere near the value of 0.2 (20%) originally suggested by the SCS.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3