The Effects of Exam-Induced Stress on EEG Profiles and Memory Scores

Author:

Roy Taylor1,Saroka Kevin S.1,Hossack Victoria L.1ORCID,Dotta Blake T.1

Affiliation:

1. Behavioural Neuroscience Program, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada

Abstract

Common stressors amongst postsecondary students are exam-induced anxiety and stress. The purpose of this study was to measure stress alterations in the student population around examinations and determine how they affect electroencephalogram (EEG) profiles and memory scores. Twenty university students were measured multiple times in the study. During each measurement, participants were administered a cortisol saliva test and an EEG. We hypothesized that cortisol levels, memory scores, and EEG profiles would all demonstrate changes near examinations. The brain regions of interest (ROIs) were the parahippocampal gyrus, the medial frontal gyrus, and the middle frontal gyrus. Results demonstrated that memory performance and parahippocampal activity were correlated, specifically in the 5–9 Hz frequency band. Correlations were also computed between cortisol levels, memory performance, and parahippocampal activity. The medial frontal gyrus also displayed changes in the mean (19–20 Hz) current source density (CSD) throughout the experiment. The middle frontal gyrus activation was highly variable during the different measurement time points. Essentially, when an individual’s memory scores were consistent between exam and nonexam trials, there was an increase in middle frontal gyrus activation during examination periods. Lastly, the right parahippocampal gyrus was found to be the most activated one day away from examination time. These results indicate that memory scores are related to cortisol levels and examination periods, but most importantly, there are overt and predictable alterations in student EEG profiles near examinations.

Publisher

MDPI AG

Subject

Behavioral Neuroscience,General Psychology,Genetics,Development,Ecology, Evolution, Behavior and Systematics

Reference21 articles.

1. Stress and cognitive function;McEwen;Curr. Opin. Neurobiol.,1995

2. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2012). Principles of Neuroscience, McGraw Hill Medical. [5th ed.].

3. Learning and memory under stress: Implications for the classroom;Vogel;Npj Sci. Learn.,2016

4. Evolutionary computation-based multitask learning network for railway passenger comfort evaluation from EEG signals;Cheng;Appl. Soft Comput.,2023

5. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals;Tsiouris;Comput. Biol. Med.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3