Resource Mapping Allocation Scheme in 6G Satellite Twin Network

Author:

Deng Zhongliang,Yu Xiaoyi

Abstract

The sixth generation (6G) satellite twin network is an important solution to achieve seamless global coverage of 6G. The deterministic geometric topology and the randomness of the communication behaviors of 6G networks limit the realism and transparency of cross-platform and cross-object communication, twin, and computing co-simulation networks. Meanwhile, the parallel-based serverless architecture has a high redundancy of computational resource allocation. Therefore, for the first time, we present a new hypergraph hierarchical nested kriging model, which provides theoretical analysis and modeling of integrated relationships for communication, twin, and computing. We explore the hierarchical unified characterization method which joins heterogeneous topologies. A basis function matrix for local flexible connectivity of the global network is designed for the connection of huge heterogeneous systems to decouple the resource mapping among heterogeneous networks. To improve the efficiency of resource allocation in communication, twin, and computing integrated network, a multi-constraint multi-objective genetic algorithm (MMGA) based on the common requirements of operations, storage, interaction, and multi-layer optimal solution conflict is proposed for the first time. The effectiveness of the algorithm and architecture is verified through simulation and testing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference91 articles.

1. WiSE: A System-Level Simulator for 5G Mobile Networks

2. 5G K-SimSys for Open/Modular/Flexible System-Level Simulation: Overview and its Application to Evaluation of 5G Massive MIMO

3. Verification of the Vienna 5G link and system level simulators and their interaction;Pratschner;Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC),2019

4. Guidelines for evaluation of radio interface technologies for IMT-2020 https://www.itu.int/pub/R-REP-M.2412-2017

5. OPNET Technologies https://opnetprojects.com/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning based Dynamic Resource Allocation in 6G Network;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Space Information Network Virtualized Communication Design of Terahertz Interface;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3