Design of Piezoelectric Ultrasonic Transducer Based on Doped PDMS

Author:

Yang Ran,Liu Wenyi,Gao Wanjia,Kang Dingwei

Abstract

The performance of the ultrasonic transducer will directly affect the accuracy of ultrasonic experimental measurement. Therefore, in order to meet the requirements of a wide band, a kind of annular 2-2-2 piezoelectric composite is proposed based on doped PDMS. In this paper, the transducer structure consisted of PZT-5A piezoelectric ceramics and PDMS doped with 3 wt.% Al2O3:SiO2 (1:6) powder, which constituted the piezoelectric composite. MATLAB and COMSOL software were used for simulation. Meanwhile, the electrode materials were selected. Then, the performance of the designed annular 2-2-2 ultrasonic transducer was tested. The simulation results show that when the polymer phase material of the piezoelectric ultrasonic transducer is doped PDMS, the piezoelectric phase and the ceramic substrate account for 70% of the total volume, the polymer phase accounts for 30% of the total volume, and the maximum frequency band width can reach 90 kHz. The experimental results show that the maximum bandwidth of −3 dB can reach 104 kHz when the frequency is 160 kHz. The results of the electrode test show that the use of Cu/Ti electrode improves the electrical conductivity of the single electrode. In this paper, the annular 2-2-2 transducer designed in the case of small volume had the characteristics of a wide frequency band, which was conducive to the miniaturization and integration of the transducer. Therefore, we believe that the annular 2-2-2 piezoelectric composite has broad application prospects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3