Performance of Graphite and Titanium as Cathode Electrode Materials on Poultry Slaughterhouse Wastewater Treatment

Author:

Meiramkulova KulyashORCID,Devrishov Davud,Marzanov Nurbiy,Marzanova Saida,Kydyrbekova AliyaORCID,Uryumtseva Tatyana,Tastanova Lyazzat,Mkilima TimothORCID

Abstract

Despite the potential applicability of the combination between aluminium (anode) and graphite or titanium (cathode) for poultry slaughterhouse wastewater treatment, their technical and economic feasibilities have not been comprehensively captured. In this study, aluminium (anode) and graphite and titanium as cathode electrode materials were investigated and compared in terms of their performance on poultry slaughterhouse wastewater treatment. The wastewater samples collected from the Izhevsk Production Corporative (PC) poultry farm in Kazakhstan were treated using a lab-based electrochemical treatment plant and then analyzed after every 20 and 40 min of the treatment processes. Cost analysis for both electrode combinations was also performed. From the analysis results, the aluminium–graphite electrode combination achieved high removal efficiency from turbidity, color, nitrite, phosphates, and chemical oxygen demand, with removal efficiency ranging from 72% to 98% after 20 min, as well as 88% to 100% after 40 min. A similar phenomenon was also observed from the aluminium–titanium electrode combination, with high removal efficiency achieved from turbidity, color, total suspended solids, nitrite, phosphates, and chemical oxygen demand, ranging from 81% to 100% after 20 min as well as from 91% to 100% after 40 min. This means the treatment performances for both aluminium–graphite and aluminium–titanium electrode combinations were highly affected by the contact time. The general performance in terms of removal efficiency indicates that the aluminium–titanium electrode combination outperformed the aluminium–graphite electrode combination. However, the inert character of the graphite electrode led to a positive impact on the total operating cost. Therefore, the aluminium–graphite electrode combination was observed to be cheaper than the aluminium–titanium electrode combination in terms of the operating cost.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3