Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites

Author:

Wu YinORCID,Cao YiORCID,Wu Ying,Li Dichen

Abstract

Nuclear energy provides enduring power to space vehicles, but special attention should be paid to radiation shielding during the development and use of nuclear energy systems. In this paper, novel composite materials containing poly-ether-ether-ketone (PEEK) as a substrate and different tungsten contents as a reinforcing agent were developed and tested as shielding for gamma-ray radiation. Shielding test bodies were quickly processed by fused deposition modeling (FDM) 3D printing, and their mechanical, shielding properties of composite materials were evaluated. The results revealed shielding materials with excellent mechanical properties which can further be improved by heat treatment. Under 0.45 MPa load, the heat deflection temperature of PEEK/tungsten (metal) composites was significantly lower than that of PEEK/boron carbide (non-metal) composites. The new shielding materials also demonstrated better shielding of low-energy 137Cs than high-energy 60Co. The gamma-ray shielding rates of test pieces shielding materials made of the same thickness changed exponentially with the tungsten content present in the composite materials. More tungsten led to a better shielding effect. At the same tungsten content, the gamma-ray shielding effect showed a proportional relationship with the thickness of the shielding test bodies, in which thicker test bodies induced better shielding effects. In sum, the integration of 3D printing in the mechanical design and manufacturing of shielding bodies is an effective and promising way for quick processing when considering diverse rays and complex environments. Lighter shielding bodies, at lower costs, can be achieved by structural design in limited space to maximize the material utilization rate and reduce waste.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3