Estimation of the Mechanical Recovery Potential of Spilled Oil at Sea Considering the Spatial Thickness Distribution

Author:

Choe Yunseon,Kim Hyeonuk,Huh CheolORCID,Kim Choong-Ki,Cho Meang-Ik,Choi Hyuek-JinORCID

Abstract

Recovery modeling and countermeasures for oil spilled at sea have been extensively researched, but research remains insufficient on recovery potential estimation methods. It is required to access the mechanical recovery potential by considering the relationship between oil behavior, environmental conditions, and the performance of clean-up activities. Two response-planning models were developed in this study. One is a spatially uniform recovery model for estimating recovery potential that reflects weathering, oil properties, and equipment efficiency. The other is a spatially nonuniform recovery model that considers not only the above characteristics but also local thickness reduction by skimming. A comparison between the two models and an analysis of their effects on response was carried out through the calculation using an accident scenario. It is possible to analyze the effect of the thin slicks, natural dissipation, and the quantification of deployable skimming systems with the spatially nonuniform recovery model. Finally, we analyzed interrelationships among residual oil volume on the sea, response time, and the number of skimming systems.

Funder

Korea Coast Guard

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference55 articles.

1. Oil 2019 Executive Summary,2019

2. BP Statistical Review of World Energy 2019,2019

3. Oil Tanker Spill Statistics 2018https://www.itopf.org/knowledge-resources/data-statistics/statistics/

4. Oil spills from global tankers: Status review and future governance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3