Pressure Sensing Technique for Observing Seabed Deformation Caused by Submarine Sand Wave Migration

Author:

Liu XiaoleiORCID,Zheng Xiaoquan,Tian Zhuangcai,Zhang Hong,Chen Tian

Abstract

Long-term, continuous in-situ observation of seabed deformation plays an important role in studying the mechanisms of sand wave migration and engineering early warning methods. Research on pressure sensing techniques has examined the possibility of using the temporal characteristics of the vertical deformation of the seafloor to identify important factors (e.g., wave height and migration rate) of submarine sand wave migration. Two pressure sensing tools were developed in this study to observe the seabed deformation caused by submarine sand wave migration (a fixed-depth total pressure recorder (TPRFD) and a surface synchronous bottom pressure recorder (BPRSS)), based on the principle that as a sand wave migrates under hydrodynamic forcing, the near-bottom water pressure, bottom pressure and total fixed pressure synchronously change with time. Laboratory flume experiments were performed, using natural sandy sediments taken from the beach of Qingdao, China, to better present and discuss the feasibility and limitations of using these two pressure sensing methods to acquire continuous observations of seabed deformation. The results illustrate that the proposed pressure sensor techniques can be effectively applied in reflecting elevation caused by submarine sand wave migration (the accuracy of the two methods in observing the experimental bed morphology was more than 90%). However, an unexpected step-like process of the change in sand wave height observed by BPRSS is presented to show that the sensor states can be easily disturbed by submarine environments, and thus throw the validity of BPRSS into question. Therefore, the TPRFD technique is more worthy of further study for observing submarine sand wave migration continuously and in real-time.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marine geohazards: Past, present, and future;Engineering Geology;2023-09

2. New Advances in Marine Engineering Geology;Journal of Marine Science and Engineering;2021-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3