Obtaining Sustainable Electrical Energy from Pepper Waste

Author:

Segundo Rojas-Flores1ORCID,Magaly De1ORCID,Luis Cabanillas-Chirinos2ORCID,Otiniano Nélida1ORCID,Soto-Deza Nancy1,Terrones-Rodriguez Nicole1,Mayra De1

Affiliation:

1. Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru

2. Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru

Abstract

Currently, two significant problems involve the government, population, and environment: the accelerated increase in organic waste and the need to replace conventional energy with environmentally sustainable energy. The sustainable use of organic waste is being intensely investigated to generate energy plants that produce alternative sustainable electrical energy beneficial to the population at a low cost. The novelty of this research is given by the use of pepper waste as fuel in the generation of bioelectricity, giving added value to these types of waste, benefiting farmers and companies dedicated to the export and import of these fruits, because they will be able to generate their own electrical energy using their own waste at a lower cost. For this reason, this research uses pepper waste as fuel in single-chamber microbial fuel cells manufactured at a low cost as its primary objective. The maximum values of the electric current (5.118 ± 0.065 mA) and electric potential (1.018 ± 0.101 V) were shown on the fourteenth day, with an optimal operating pH of 7.141 ± 0.134 and electrical conductivity of 112.846 ± 4.888 mS/cm. Likewise, a reduction in the COD was observed from 1210.15 ± 0.89 mg/L to 190.36 ± 16.58 mg/L in the 35 days of monitoring and with a maximum ORP of 426.995 ± 8.615 mV, whose internal resistance was 33.541 ± 2.471 Ω. The peak power density was 154.142 ± 8.151 mW/cm2 at a current density of 4.834 A/cm2, and the Rossellomorea marisflavi strain was identified with 99.57% identity.

Funder

Universidad Cesar Vallejo

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3