Research on the Spatiotemporal Characteristics of the Coupling Coordination Relationship of the Energy–Food–Water System in the Xinjiang Subregion

Author:

Gao Jing1,Xu Jian1

Affiliation:

1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

In the Xinjiang region, the sustainable management of water resources, energy, and food is crucial for regional development. This study establishes a coupling evaluation index for energy–food–water (EFW) systems from the perspectives of supply, consumption, and efficiency. Using an integrated EFM-CDD-RDD-CCDM approach, an assessment of the coupling and coordination levels of the EFW systems in 14 cities within Xinjiang was conducted for the period of 2004 to 2020. Additionally, the method of obstacle degree identification was utilized to determine the main barriers affecting the EFW systems. Key findings included the following. (1) In terms of individual system coordination indices, the water resource systems exhibited overall higher coordination (ranging from 0.30 to 0.72) with comparatively minor spatial variability, while the energy (from 0.18 to 0.81) and food (from 0.12 to 0.83) systems showed greater temporal and spatial fluctuations. From 2004 to 2020, improvements were observed in the coordination of food and water resource systems, whereas a decline was noted in the coordination of the energy subsystem. (2) Prior to 2011, the coupling of food–water and energy–food systems showed an upward trend, whereas the energy–water coupling decreased annually by 2.62%, further highlighting the tensions between energy development and water resource constraints in Xinjiang. (3) The comprehensive coupling coordination index of the Xinjiang EFW systems ranged between 0.59 and 0.80; between 2004 and 2020, there was an oscillatory increase. From 2004 to 2016, the coupling and coordination degree across the municipalities generally improved, with the regions on the western side and southern slope of the Tianshan Mountains, the Altai Mountains, and the northwestern edge of the Junggar Basin exhibiting the highest levels, followed by the three prefectures in southern Xinjiang. (4) The EFW obstacle degree posed by the food systems in Xinjiang and its divisions showed a decreasing trend from 2004 to 2020, with the energy system identified as the main factor affecting the coupling and coordination degrees of the EFW systems (increasing by 44% to 52%). Therefore, it is imperative to accelerate the energy transition and optimization in the lead energy development and production areas of Xinjiang. This research provides a scientific basis for Xinjiang’s sustainable development strategies and highlights potential directions for the future optimization of resource management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3