Abstract
This study presents a 2-D lidar odometry based on an ICP (iterative closest point) variant used in a simple and straightforward platform that achieves real-time and low-drift performance. With a designated multi-scale feature extraction procedure, the lidar cloud information can be utilized at multiple levels and the speed of data association can be accelerated according to the multi-scale data structure, thereby achieving robust feature extraction and fast scan-matching algorithms. First, on a large scale, the lidar point cloud data are classified according to the curvature into two parts: smooth collection and rough collection. Then, on a small scale, noise and unstable points in the smooth or rough collection are filtered, and edge points and corner points are extracted. Then, the proposed tangent-vector-pairs based on edge and corner points are applied to evaluate the rotation term, which is significant for producing a stable solution in motion estimation. We compare our performance with two excellent open-source SLAM algorithms, Cartographer and Hector SLAM, using collected and open-access datasets in structured indoor environments. The results indicate that our method can achieve better accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry