Abstract
Succinic acid production through biological fermentation led to new pathways in the integration of renewable feedstock from different industries into biosynthesis. In this article, we investigate the population growth dynamics and succinic acid production potential of the recently isolated natural succinic acid producer, Basfia succiniciproducens, using in silico constraint-based metabolic models as well as in vitro experiments. Our work focuses on the influence of different renewable substrates and added yeast extract on fermentation dynamics, and the produced metabolites of the strain cultured in mineral (minimal) medium. According to our experiments, which were carried out as small-scale fermentations and in bioreactor conditions, glucose is the preferred carbon source, while the addition of 1% yeast extract has a significant positive effect on biomass formation. In the case of B. succiniciproducens cultured in minimal salt medium, a production potential as high as 47.09 mM succinic acid was obtained in these conditions. Industrial applications related to this bacterial strain could contribute to new possibilities for the re-use of byproducts by using fermentation processes, leading to high added-value compounds.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献