The Effect of Die Material on the Crown Fracture Strength of Zirconia Crowns

Author:

Sayed Ahmed Akram12ORCID,Lawson Nathaniel C.2ORCID,Fu Chin-Chuan3,Bora Pranit V.2,Kee Edwin4,Nejat Amir H.4

Affiliation:

1. Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta 6624033, Egypt

2. Division of Biomaterials, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA

3. Division of Prosthodontics, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35209, USA

4. Division of Prosthodontics, LSU School of Dentistry, New Orleans, LA 70119, USA

Abstract

Background: Determination of the eligibility of several tooth analog materials for use in crown fracture testing. Methods: A standardized premolar crown preparation was replicated into three types of resin dies (C&B, low modulus 3D printed resin; OnX, high modulus 3D printed resin composite; and highest modulus milled resin composite). 0.8 mm zirconia crowns were bonded to the dies and the maximum fracture load of the crowns was tested. Twelve extracted human premolars were prepared to a standardized crown preparation, and duplicate dies of the prepared teeth were 3D printed out of C&B. Zirconia crowns were bonded to both the dies and natural teeth, and their fracture load was tested. Results: There was no statistical difference between the fracture load of zirconia crowns bonded to standardized dies of C&B (1084.5 ± 134.2 N), OnX (1112.7 ± 109.8 N) or Lava Ultimate (1137.5 ± 88.7 N) (p = 0.580). There was no statistical difference between the fracture load of crowns bonded to dentin dies (1313 ± 240 N) and a 3D-printed resin die (C&B, 1156 ± 163 N) (p = 0.618). Conclusions: There was no difference in the static fracture load of zirconia crowns bonded to standardized resin dies with different moduli or between a low modulus resin die and natural dentin die.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3