Investigation of Mechanical and Shrinkage Performance for Large-Size Cement-Stabilized Aggregates

Author:

Zhao Chengwei1,Huang Tuo2,Gao Xinglong2,Li Yahui2,Lu Li2

Affiliation:

1. Guangxi Transportation Science Engineering Construction Co., Ltd., Nanning 530007, China

2. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Cement-stabilized macadam materials are widely utilized as semi-rigid base materials in road construction. However, conventional cement-stabilized macadam (CCSM) bases often develop shrinkage cracks during early construction and maintenance due to variations in humidity and temperature. Shrinkage cracks can subsequently result in reflective cracks in the asphalt pavement, significantly reducing the overall service life of the road. This study systematically evaluates the shrinkage and mechanical properties of large-size cement-stabilized macadam (LSCSM). Initially, the mix proportion for LSCSM is determined using the Bailey method. Subsequently, an experimental design based on the response surface method is implemented to comprehensively investigate various properties, including unconfined compressive strength, compressive rebound modulus, flexural strength, and the durability aspects of early drying shrinkage and temperature shrinkage through laboratory experiments. Further, the performance differences between CCSM and LSCSM are analyzed comparatively. The findings reveal that the compressive strength of LSCSM surpasses that of CCSM, albeit with comparatively lower compressive rebound modulus and flexural strength. LSCSM demonstrates a unique blend of characteristics, exhibiting traits of both semi-rigid and flexible materials. Furthermore, LSCSM exhibits favorable crack resistance properties, as evidenced by lower dry shrinkage strain, average dry and temperature shrinkage coefficient compared to CCSM. The proposed LSCSM in this study effectively reduces cement dosage and enhances the crack resistance performance of base materials.

Funder

National Natural Science Foundation of China

Key Scientific Research Project of Hunan Provincial Department of Education

Natural Science Foundation of Hunan Province

National Key R&D Program of China

Key technology project of transportation industry

Postgraduate Science Research Innovation Project of Changsha University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3