The Influence of Contemporary Denture Base Fabrication Methods on Residual Monomer Content, Flexural Strength and Microhardness

Author:

Vuksic Josip12,Pilipovic Ana3ORCID,Poklepovic Pericic Tina4,Kranjcic Josip25

Affiliation:

1. Department of Removable Prosthodontics, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia

2. Department of Prosthodontics, University Hospital Dubrava, Av. Gojka Šuška 6, 10000 Zagreb, Croatia

3. University of Zagreb Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000 Zagreb, Croatia

4. School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia

5. Department of Fixed Prosthodontics, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia

Abstract

(1) Background: Digital technologies are available for denture base fabrication, but there is a lack of scientific data on the mechanical and chemical properties of the materials produced in this way. Therefore, the aim of this study was to investigate the residual monomer content, flexural strength and microhardness of denture base materials as well as correlations between investigated parameters. (2) Methods: Seven denture base materials were used: one conventional heat cured polymethyl methacrylate, one polyamide, three subtractive manufactured materials and two additive manufactured materials. High-performance liquid chromatography was used to determine residual monomer content and the test was carried out in accordance with the specification ISO No. 20795-1:2013. Flexural strength was also determined according to the specification ISO No. 20795-1:2013. The Vickers method was used to investigate microhardness. A one-way ANOVA with a Bonferroni post-hoc test was used for the statistical analysis. The Pearson correlation test was used for the correlation analysis. (3) Results: There was a statistically significant difference between the values of residual monomer content of the different denture base materials (p < 0.05). Anaxdent pink blank showed the highest value of 3.2% mass fraction, while Polident pink CAD-CAM showed the lowest value of 0.05% mass fraction. The difference between the flexural strength values of the different denture base materials was statistically significant (p < 0.05), with values ranging from 62.57 megapascals (MPa) to 103.33 MPa. The difference between the microhardness values for the different denture base materials was statistically significant (p < 0.05), and the values obtained ranged from 10.61 to 22.86 Vickers hardness number (VHN). A correlation was found between some results for the material properties investigated (p < 0.05). (4) Conclusions: The selection of contemporary digital denture base manufacturing techniques may affect residual monomer content, flexural strength and microhardness but is not the only criterion for achieving favourable properties.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3