Abstract
Introduction: In animals, body size is correlated with many aspects of natural history, such as life span, abundance, dispersal capacity and diet breadth. However, contrasting trends have been reported for the relationship between body size and these ecological traits. Methods: Fruit-feeding butterflies were used to investigate whether body size is correlated with species abundance, dispersal, permanence, and larval diet breadth in a Neotropical savanna in Brazil (Cerrado). We used Blomberg’s K and Phylogenetic Generalized Least Squares models (PGLS) to measure phylogenetic signal strength in species traits and to estimate size–dispersal–diet breadth associations, while also taking shared ancestry into account. Results: 539 individuals from 27 species were captured, and 190 individuals were recaptured, representing a 35% recapture rate. We found body size to be negatively associated with butterfly abundance, and positively associated with dispersal level, distance traveled, number of traps visited, individual permanence, and diet breadth. These results indicate that larger butterflies are more likely to disperse over longer distances. Moreover, larger butterflies have more generalized larval diets, based on the number of host plant families, genera, and phylogenetic diversity of the host plants they consume as larvae. Smaller butterflies rely on fewer resources, which is reflected in their higher survival in small patches and may explain their lower dispersal ability and higher diet specialization. Nevertheless, lower dispersal ability may, if not compensated by large population sizes, threaten small-bodied species inhabiting environments, such as the Cerrado, which have intense deforestation rates. Conclusions: Body size is positively associated with dispersal and diet breadth for the fruit-feeding butterflies collected in this study.
Funder
National Council for Scientific and Technological Development
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献