Quantification of Soil Losses along the Coastal Protected Areas in Kenya

Author:

Hategekimana YvesORCID,Allam MonaORCID,Meng Qingyan,Nie Yueping,Mohamed Elhag

Abstract

Monitoring of improper soil erosion empowered by water is constantly adding more risk to the natural resource mitigation scenarios, especially in developing countries. The demographical pattern and the rate of growth, in addition to the impairments of the rainfall pattern, are consequently disposed to adverse environmental disturbances. The current research goal is to evaluate soil erosion triggered by water in the coastal area of Kenya on the district level, and also in protected areas. The Revised Universal Soil Loss Equation (RUSLE) model was exercised to estimate the soil loss in the designated study area. RUSLE input parameters were functionally realized in terms of rainfall and runoff erosivity factor (R), soil erodibility factor (K), slope length and gradient factor (LS), land cover management factor (C) and slope factor (P). The realization of RUSLE input parameters was carried out using different dataset sources, including meteorological data, soil/geology maps, the Digital Elevation Model (DEM) and processing of satellite imagery. Out of 26 districts in coastal area, eight districts were projected to have mean annual soil loss rates of >10 t·ha−1·y−1: Kololenli (19.709 t·ha−1·y−1), Kubo (14.36 t·ha−1·y−1), Matuga (19.32 t·ha−1·y−1), Changamwe (26.7 t·ha−1·y−1), Kisauni (16.23 t·ha−1·y−1), Likoni (27.9 t·ha−1·y−1), Mwatate (15.9 t·ha−1·y−1) and Wundanyi (26.51 t·ha−1·y−1). Out of 34 protected areas at the coastal areas, only four were projected to have high soil loss estimation rates >10 t·ha−1·y−1: Taita Hills (11.12 t·ha−1·y−1), Gonja (18.52 t·ha−1·y−1), Mailuganji (13.75.74 t·ha−1·y−1), and Shimba Hills (15.06 t·ha−1·y−1). In order to mitigate soil erosion in Kenya’s coastal areas, it is crucial to regulate the anthropogenic disturbances embedded mainly in deforestation of the timberlands, in addition to the natural deforestation process caused by the wildfires.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3