Maximum Fraction Images Derived from Year-Based Project for On-Board Autonomy-Vegetation (PROBA-V) Data for the Rapid Assessment of Land Use and Land Cover Areas in Mato Grosso State, Brazil

Author:

Godinho Cassol Henrique Luis,Arai Egidio,Eyji Sano Edson,Dutra Andeise CerqueiraORCID,Hoffmann Tânia Beatriz,Shimabukuro Yosio Edemir

Abstract

This paper presents a new approach for rapidly assessing the extent of land use and land cover (LULC) areas in Mato Grosso state, Brazil. The novel idea is the use of an annual time series of fraction images derived from the linear spectral mixing model (LSMM) instead of original bands. The LSMM was applied to the Project for On-Board Autonomy-Vegetation (PROBA-V) 100-m data composites from 2015 (~73 scenes/year, cloud-free images, in theory), generating vegetation, soil, and shade fraction images. These fraction images highlight the LULC components inside the pixels. The other new idea is to reduce these time series to only six single bands representing the maximum and standard deviation values of these fraction images in an annual composite, reducing the volume of data to classify the main LULC classes. The whole image classification process was conducted in the Google Earth Engine platform using the pixel-based random forest algorithm. A set of 622 samples of each LULC class was collected by visual inspection of PROBA-V and Landsat-8 Operational Land Imager (OLI) images and divided into training and validation datasets. The performance of the method was evaluated by the overall accuracy and confusion matrix. The overall accuracy was 92.4%, with the lowest misclassification found for cropland and forestland (<9% error). The same validation data set showed 88% agreement with the LULC map made available by the Landsat-based MapBiomas project. This proposed method has the potential to be used operationally to accurately map the main LULC areas and to rapidly use the PROBA-V dataset at regional or national levels.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3