Corn Biomass Estimation by Integrating Remote Sensing and Long-Term Observation Data Based on Machine Learning Techniques

Author:

Geng Liying,Che TaoORCID,Ma MingguoORCID,Tan JunleiORCID,Wang HaiboORCID

Abstract

The accurate and timely estimation of regional crop biomass at different growth stages is of great importance in guiding crop management decision making. The recent availability of long time series of remote sensing data offers opportunities for crop monitoring. In this paper, four machine learning models, namely random forest (RF), support vector machine (SVM), artificial neural network (ANN), and extreme gradient boosting (XGBoost) were adopted to estimate the seasonal corn biomass based on field observation data and moderate resolution imaging spectroradiometer (MODIS) reflectance data from 2012 to 2019 in the middle reaches of the Heihe River basin, China. Nine variables were selected with the forward feature selection approach from among twenty-seven variables potentially influencing corn biomass: soil-adjusted total vegetation index (SATVI), green ratio vegetation index (GRVI), Nadir_B7 (2105–2155 nm), Nadir_B6 (1628–1652 nm), land surface water index (LSWI), normalized difference vegetation index (NDVI), Nadir_B4 (545–565 nm), and Nadir_B3 (459–479 nm). The results indicated that the corn biomass was suitably estimated (the coefficient of determination (R2) was between 0.72 and 0.78) with the four machine learning models. The XGBoost model performed better than the other three models (R2 = 0.78, root mean squared error (RMSE) = 2.86 t/ha and mean absolute error (MAE) = 1.86 t/ha). Moreover, the RF model was an effective method (R2 = 0.77, RMSE = 2.91 t/ha and MAE = 1.91 t/ha), with a performance comparable to that of the XGBoost model. This study provides a reference for estimating crop biomass from MOD43A4 datasets. In addition, the research demonstrates the potential of machine learning techniques to achieve a relatively accurate estimation of daily corn biomass at a large scale.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3