Multi-Task Collaboration Deep Learning Framework for Infrared Precipitation Estimation

Author:

Yang Xuying,Sun Peng,Zhang FengORCID,Du Zhenhong,Liu Renyi

Abstract

Infrared observation is an all-weather, real-time, large-scale precipitation observation method with high spatio-temporal resolution. A high-precision deep learning algorithm of infrared precipitation estimation can provide powerful data support for precipitation nowcasting and other hydrological studies with high timeliness requirements. The “classification-estimation” two-stage framework is widely used for balancing the data distribution in precipitation estimation algorithms, but still has the error accumulation issue due to its simple series-wound combination mode. In this paper, we propose a multi-task collaboration framework (MTCF), i.e., a novel combination mode of the classification and estimation model, which alleviates the error accumulation and retains the ability to improve the data balance. Specifically, we design a novel positive information feedback loop composed of a consistency constraint mechanism, which largely improves the information abundance and the prediction accuracy of the classification branch, and a cross-branch interaction module (CBIM), which realizes the soft feature transformation between branches via the soft spatial attention mechanism. In addition, we also model and analyze the importance of the input infrared bands, which lay a foundation for further optimizing the input and improving the generalization of the model on other infrared data. Extensive experiments based on Himawari-8 demonstrate that compared with the baseline model, our MTCF obtains a significant improvement by 3.2%, 3.71%, 5.13%, 4.04% in F1-score when the precipitation intensity is 0.5, 2, 5, 10 mm/h, respectively. Moreover, it also has a satisfactory performance in identifying precipitation spatial distribution details and small-scale precipitation, and strong stability to the extreme-precipitation of typhoons.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3