Near-Real-Time Flood Mapping Using Off-the-Shelf Models with SAR Imagery and Deep Learning

Author:

Katiyar VaibhavORCID,Tamkuan Nopphawan,Nagai Masahiko

Abstract

Timely detection of flooding is paramount for saving lives as well as evaluating levels of damage. Floods generally occur under specific weather conditions, such as excessive precipitation, which makes the presence of clouds very likely. For this reason, radar-based sensors are most suitable for near-real-time flood mapping. The public dataset Sen1Floods11 recently released by the Cloud to Street is one example of ongoing beneficial initiatives to employ deep learning for flood detection with synthetic aperture radar. The present study used this dataset to improve flood detection using well-known segmentation architectures, such as SegNet and UNet, as networks. In addition, this study provided a deeper understanding of which set of polarized band combination is more suitable for distinguishing permanent water, as well as flooded areas from the SAR image. The overall performance of the models with various kinds of labels and a combination of bands to detect all surface water areas were also assessed. Finally, the trained models were tested on a completely different location at Kerala, India, during the 2018 flood for verifying their performance in the real-world situation of a flood event outside of the given test set in the dataset. The results prove that trained models can be used as off-the-shelf models to achieve an intersection over union (IoU) as high as 0.88 in comparison with optical images. The omission and commission error were less than 6%. However, the most important result is that the processing time for the whole satellite image was less than 1 min. This will help significantly for providing analysis and near-real-time flood mapping services to first responder organizations during flooding disasters.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3