Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data

Author:

Gong Faming,Zhang Kui,Liu Shujun

Abstract

The Larsen C Ice Shelf (LCIS) is the largest ice shelf in the Antarctica Peninsula, and its state can be considered to be an indicator of local climate change. The goal of this paper is to invert the rigidity of the LCIS based on the interferometric synthetic aperture radar (InSAR) technique using Sentinel-1 images. A targeted processing chain is first used to obtain reliable interferometric phase measurements under the circumstance of rapid ice flow. Unfortunately, only the descending data are available, which disallows the corresponding 2-D velocity field to be directly obtained from such measurements. A new approach is thus proposed to estimate the interferometric phase-based 2-D velocity field with the assistance of speckle tracking offsets. This approach establishes an implicit relationship between range and azimuth displacements based on speckle tracking observations. By taking advantage of such a relationship, the equivalent interferometric signals in the azimuth direction are estimated, thereby recovering the interferometric phase-based 2-D ice velocity field of the LCIS. To further investigate the state of the LCIS, the recovered 2-D velocity field is utilized to invert the ice rigidity. The shallow-shelf approximation (SSA) is the core of the reverse model, which is closely dependent on boundary conditions, including kinematic and dynamic conditions. The experimental results demonstrate that the spatial distribution of the rigidity varies approximately from 70 MPa·s1/3 to 300 MPa·s1/3. This rigidity distribution can reproduce a similar ice flow pattern to the observations.

Funder

National Natural Science Foundation of China

Chongqing Science and Technology Bureau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geodetic Monitoring for Land Deformation;Remote Sensing;2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3