Hyperspectral Image Super-Resolution under the Guidance of Deep Gradient Information

Author:

Zhao Minghua,Ning Jiawei,Hu Jing,Li Tingting

Abstract

Hyperspectral image (HSI) super-resolution has gained great attention in remote sensing, due to its effectiveness in enhancing the spatial information of the HSI while preserving the high spectral discriminative ability, without modifying the imagery hardware. In this paper, we proposed a novel HSI super-resolution method via a gradient-guided residual dense network (G-RDN), in which the spatial gradient is exploited to guide the super-resolution process. Specifically, there are three modules in the super-resolving process. Firstly, the spatial mapping between the low-resolution HSI and the desired high-resolution HSI is learned via a residual dense network. The residual dense network is used to fully exploit the hierarchical features learned from all the convolutional layers. Meanwhile, the gradient detail is extracted via a residual network (ResNet), which is further utilized to guide the super-resolution process. Finally, an empirical weight is set between the fully obtained global hierarchical features and the gradient details. Experimental results and the data analysis on three benchmark datasets with different scaling factors demonstrated that our proposed G-RDN achieved favorable performance.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3