Multiple Data Products Reveal Long-Term Variation Characteristics of Terrestrial Water Storage and Its Dominant Factors in Data-Scarce Alpine Regions

Author:

Wang Xuanxuan,Liu LiuORCID,Niu Qiankun,Li HaoORCID,Xu Zongxue

Abstract

As the “Water Tower of Asia” and “The Third Pole” of the world, the Qinghai–Tibet Plateau (QTP) shows great sensitivity to global climate change, and the change in its terrestrial water storage has become a focus of attention globally. Differences in multi-source data and different calculation methods have caused great uncertainty in the accurate estimation of terrestrial water storage. In this study, the Yarlung Zangbo River Basin (YZRB), located in the southeast of the QTP, was selected as the study area, with the aim of investigating the spatio-temporal variation characteristics of terrestrial water storage change (TWSC). Gravity Recovery and Climate Experiment (GRACE) data from 2003 to 2017, combined with the fifth-generation reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5) data and Global Land Data Assimilation System (GLDAS) data, were adopted for the performance evaluation of TWSC estimation. Based on ERA5 and GLDAS, the terrestrial water balance method (PER) and the summation method (SS) were used to estimate terrestrial water storage, obtaining four sets of TWSC, which were compared with TWSC derived from GRACE. The results show that the TWSC estimated by the SS method based on GLDAS is most consistent with the results of GRACE. The time-lag effect was identified in the TWSC estimated by the PER method based on ERA5 and GLDAS, respectively, with 2-month and 3-month lags. Therefore, based on the GLDAS, the SS method was used to further explore the long-term temporal and spatial evolution of TWSC in the YZRB. During the period of 1948–2017, TWSC showed a significantly increasing trend; however, an abrupt change in TWSC was detected around 2002. That is, TWSC showed a significantly increasing trend before 2002 (slope = 0.0236 mm/month, p < 0.01) but a significantly decreasing trend (slope = −0.397 mm/month, p < 0.01) after 2002. Additional attribution analysis on the abrupt change in TWSC before and after 2002 was conducted, indicating that, compared with the snow water equivalent, the soil moisture dominated the long-term variation of TWSC. In terms of spatial distribution, TWSC showed a large spatial heterogeneity, mainly in the middle reaches with a high intensity of human activities and the Parlung Zangbo River Basin, distributed with great glaciers. The results obtained in this study can provide reliable data support and technical means for exploring the spatio-temporal evolution mechanism of terrestrial water storage in data-scarce alpine regions.

Funder

National Natural Science Foundation of China

National Training Program of Innovation and Entrepreneurship for Undergraduates

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3