Raman Spectroscopy Combined with Malaria Protein for Early Capture and Recognition of Broad-Spectrum Circulating Tumor Cells

Author:

Liu Xinning12,Zhang Yidan12,Li Xunrong34,Xu Jian34,Zhao Chenyang12ORCID,Yang Jinbo12

Affiliation:

1. Key Laboratory of Marine Drugs, Ministry of Education, Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China

2. Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China

3. Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266071, China

4. University of Chinese Academy of Sciences, Beijing 100000, China

Abstract

Early identification of tumors can significantly reduce the mortality rate. Circulating tumor cells (CTCs) are a type of tumor cell that detaches from the primary tumor and circulates through the bloodstream. Monitoring CTCs may allow the early identification of tumor progression. However, due to their rarity and heterogeneity, the enrichment and identification of CTCs is still challenging. Studies have shown that Raman spectroscopy could distinguish CTCs from metastatic cancer patients. VAR2CSA, a class of malaria proteins, has a strong broad-spectrum binding effect on various tumor cells and is a promising candidate biomarker for cancer detection. Here, recombinant malaria VAR2CSA proteins were synthesized, expressed, and purified. After confirming that various types of tumor cells can be isolated from blood by recombinant malaria VAR2CSA proteins, we further proved that the VAR2CSA combined with Raman spectroscopy could be used efficiently for tumor capture and type recognition using A549 cell lines spiked into the blood. This would allow the early screening and detection of a broad spectrum of CTCs. Finally, we synthesized and purified the malaria protein fusion antibody and confirmed its in vitro tumor-killing activity. Herein, this paper exploits the theoretical basis of a novel strategy to capture, recognize, and kill broad-spectrum types of CTCs from the peripheral blood.

Funder

Key R&D Program of Shandong Province

Shandong Provincial Key Laboratory Platform Project

Major Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3