LRG1 Promotes ECM Integrity by Activating the TGF-β Signaling Pathway in Fibroblasts

Author:

Park Han Na1,Song Min Ji2ORCID,Choi Young Eun1ORCID,Lee Dong Hun234,Chung Jin Ho2345,Lee Seung-Taek1ORCID

Affiliation:

1. Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea

2. Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea

3. Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea

4. Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea

5. Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea

Abstract

Leucine-rich alpha-2-glycoprotein 1 (LRG1) mediates skin repair and fibrosis by stimulating the transforming growth factor-beta (TGF-β) signaling pathway. In the present study, we investigated the effect of LRG1 on extracellular matrix (ECM) integrity in fibroblasts, as well as on skin aging. The treatment of dermal fibroblasts with purified recombinant human LRG1 increased type I collagen secretion and decreased matrix metalloproteinase-1 secretion. Additionally, LRG1 promoted SMAD2/SMAD3 phosphorylation in a pattern similar to that of TGF-β1 treatment. An inhibitor of TGF-β receptor 1 abolished LRG1-induced SMAD2 phosphorylation. RNA sequencing identified “extracellular region”, “extracellular space”, and “extracellular matrix” as the main Gene Ontology terms in the differentially expressed genes of fibroblasts treated with or without LRG1. LRG1 increased TGF-β1 mRNA levels, suggesting that LRG1 partially transactivates the expression of TGF-β1. Furthermore, an increased expression of type I collagen was also observed in fibroblasts grown in three-dimensional cultures on a collagen gel mimicking the dermis. LRG1 mRNA and protein levels were significantly reduced in elderly human skin tissues with weakened ECM integrity compared to in young human skin tissues. Taken together, our results suggest that LRG1 could retard skin aging by activating the TGF-β signaling pathway, increasing ECM deposition while decreasing its degradation.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3