Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions

Author:

Qiang Yu1,Gao Siyan1,Zhang Yueyu23ORCID,Wang Shuai1,Chen Liang4,Mu Liuhua23,Fang Haiping1,Jiang Jie4,Lei Xiaoling1

Affiliation:

1. School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

2. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China

Abstract

The recovery of gold from water is an important research area. Recent reports have highlighted the ultrahigh capacity and selective extraction of gold from electronic waste using reduced graphene oxide (rGO). Here, we made a further attempt with the thermal rGO membranes and found that the thermal rGO membranes also had a similarly high adsorption efficiency (1.79 g gold per gram of rGO membranes at 1000 ppm). Furthermore, we paid special attention to the detailed selectivity between Au3+ and other ions by rGO membranes. The maximum adsorption capacity for Au3+ ions was about 16 times that of Cu2+ ions and 10 times that of Fe3+ ions in a mixture solution with equal proportions of Au3+/Cu2+ and Au3+/Fe3+. In a mixed-ion solution containing Au3+:Cu2+:Na+:Fe3+:Mg2+ of printed circuit board (PCB), the mass of Au3+:Cu2+:Na+:Fe3+:Mg2+ in rGO membranes is four orders of magnitude higher than the initial mass ratio. A theoretical analysis indicates that this selectivity may be attributed to the difference in the adsorption energy between the metal ions and the rGO membrane. The results are conducive to the usage of rGO membranes as adsorbents for Au capture from secondary metal resources in the industrial sector.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shanghai, China

Shanghai Supercomputer Center of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3