Mesoporous Silica Particle as an RNA Adsorbent for Facile Purification of In Vitro-Transcribed RNA

Author:

Cho Eunbin1,Namgung Jayoung1,Lee Jong Sam1,Jang Jinmin1,Jun Bong-Hyun1ORCID,Kim Dong-Eun1ORCID

Affiliation:

1. Department of Bioscience and Biotechnology, Konkuk University, 120 Neundong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

Abstract

Messenger RNA vaccines against SARS-CoV-2 hold great promise for the treatment of a wide range of diseases by using mRNA as a tool for generating vaccination antigens as well as therapeutic proteins in vivo. Increasing interest in mRNA preparation warrants reliable methods for in vitro transcription (IVT) of mRNA, which must entail the elimination of surplus side products such as immunogenic double-stranded RNA (dsRNA). We developed a facile method for the removal of dsRNA from in vitro transcribed RNA with mesoporous silica particles as RNA adsorbents. Various polyamines were tested for the facilitation of RNA adsorption onto mesoporous silica particles in the chromatography. Among the polyamines tested for RNA adsorption, spermidine showed a superior capability of RNA binding to the silica matrix. Mesoporous silica-adsorbed RNA was readily desorbed with elution buffer containing either salt, EDTA, or urea, possibly by disrupting electrostatic interaction and hydrogen bonding between RNA and the silica matrix. Purification of IVT RNA was enabled with the adsorption of RNA to mesoporous silica in a spermidine-containing buffer and subsequent elution with EDTA. By differing EDTA concentration in the eluting buffer, we demonstrated that at least 80% of the dsRNA can be removed from the mesoporous silica-adsorbed RNA. When compared with the cellulose-based removal of dsRNA from IVT RNA, the mesoporous silica-based purification of IVT RNA using spermidine and EDTA in binding and elution, respectively, exhibited more effective removal of dsRNA contaminants from IVT RNA. Thus, mRNA purification with mesoporous silica particles as RNA adsorbents is applicable for the facile preparation of nonimmunogenic RNA suitable for in vivo uses.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3