Affiliation:
1. Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
2. SYSBIO Centre for Systems Biology, 20126 Milano, Italy
Abstract
Quercetin (QUER) is a natural polyphenolic compound endowed with beneficial properties for human health, with anti-aging effects. However, although this flavonoid is commercially available as a nutraceutical, target molecules/pathways underlying its pro-longevity potential have yet to be fully clarified. Here, we investigated QUER activity in yeast chronological aging, the established model for simulating the aging of postmitotic quiescent mammalian cells. We found that QUER supplementation at the onset of chronological aging, namely at the diauxic shift, significantly increases chronological lifespan (CLS). Consistent with the antioxidant properties of QUER, this extension takes place in concert with a decrease in oxidative stress. In addition, QUER triggers substantial changes in carbon metabolism. Specifically, it promotes an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis due to improved catabolism of C2 by-products of yeast fermentation and glycerol. The former is attributable to the Sir2-dependent activity of phosphoenolpyruvate carboxykinase and the latter to the L-glycerol 3-phosphate pathway. Such a combined increased supply of gluconeogenesis leads to an increase in the reserve carbohydrate trehalose, ensuring CLS extension. Moreover, QUER supplementation to chronologically aging cells in water alone amplifies their long-lived phenotype. This is associated with intracellular glycerol catabolism and trehalose increase, further indicating a QUER-specific influence on carbon metabolism that results in CLS extension.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献