Affiliation:
1. Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
Abstract
Talaromyces purpurogenus, an endophytic fungus, exhibits beneficial effects on plants during plant–fungus interactions. However, the molecular mechanisms underlying plants’ responses to T. purpurogenus under low-phosphorous (P) stress are not fully understood. In this study, we investigated the transcriptomic changes in maize with low-P-sensitive (31778) and -tolerant (CCM454) genotypes under low-P stress and its symbiotic interaction with T. purpurogenus. Its colonization enhanced plant growth and facilitated P uptake, particularly in 31778. Transcriptome sequencing revealed that 135 DEGs from CCM454 and 389 from 31778 were identified, and that only 6 DEGs were common. This suggested that CCM454 and 31778 exhibited distinct molecular responses to T. purpurogenus inoculation. GO and KEGG analysis revealed that DEGs in 31778 were associated with nicotianamine biosynthesis, organic acid metabolic process, inorganic anion transport, biosynthesis of various secondary metabolites and nitrogen metabolism. In CCM454, DEGs were associated with anthocyanin biosynthesis, diterpenoid biosynthesis and metabolic process. After T. purpurogenus inoculation, the genes associated with phosphate transporter, phosphatase, peroxidase and high-affinity nitrate transporter were upregulated in 31778, whereas AP2-EREBP-transcription factors were detected at significantly higher levels in CCM454. This study provided insights on the molecular mechanisms underlying plant–endophytic fungus symbiosis and low-P stress in maize with low-P-sensitive and -tolerant genotypes.
Funder
Youth Fund of the National Natural Science Foundation of China
Youth Program of the Natural Science Foundation of Shandong
Science & Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta
Shandong Modern Agricultural Industrial Technology System Construction Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献