Benzenesulfonamide Analogs: Synthesis, Anti-GBM Activity and Pharmacoprofiling

Author:

Murugesan Akshaya12,Konda Mani Saravanan3ORCID,Thiyagarajan Ramesh4,Palanivel Suresh2,Gurbanov Atash V.56ORCID,Zubkov Fedor I.7ORCID,Kandhavelu Meenakshisundaram2

Affiliation:

1. Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India

2. Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O. Box 553, 33101 Tampere, Finland

3. Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai 600073, India

4. Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5. Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

6. Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan

7. Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia

Abstract

The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma.

Funder

Fundação para a Ciência e a Tecnologia (FCT)

Instituto Superior Técnico

CEEC Institutional 2018 Programs

Baku State University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3