Affiliation:
1. Pulmonary Department, Meir Medical Center, Kfar Saba 44281, Israel
2. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
Abstract
The ECM propagates processes in idiopathic pulmonary fibrosis (IPF), leading to progressive lung scarring. We established an IPF-conditioned matrix (IPF-CM) system as a platform for testing drug candidates. Here, we tested the involvement of a PGE2 and PDE4 inhibitor, Roflumilast, in the IPF-CM system. Primary normal/IPF tissue-derived human lung fibroblasts (N/IPF-HLFs) were cultured on Matrigel and then removed to create the IPF-CM. N-HLFs were exposed to the IPF-CM/N-CM with/without PGE2 (1 nM) and Roflumilast (1 µM) for 24 h. The effect of the IPF-CM on cell phenotype and pro-fibrotic gene expression was tested. In addition, electronic records of 107 patients with up to 15-year follow-up were retrospectively reviewed. Patients were defined as slow/rapid progressors using forced vital capacity (FVC) annual decline. Medication exposure was examined. N-HLFs cultured on IPF-CM were arranged in large aggregates as a result of increased proliferation, migration and differentiation. A PGE2 and Roflumilast combination blocked the large aggregate formation induced by the IPF-CM (p < 0.001) as well as cell migration, proliferation, and pro-fibrotic gene expression. A review of patient records showed that significantly more slow-progressing patients were exposed to NSAIDs (p = 0.003). PGE2/PDE4 signaling may be involved in IPF progression. These findings should be further studied.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis