Loss of ERβ in Aging LXRαβ Knockout Mice Leads to Colitis

Author:

Song Xiaoyu1ORCID,Wu Wanfu1,Dai Yubing1,Warner Margaret1,Nalvarte Ivan2ORCID,Antonson Per2ORCID,Varshney Mukesh2ORCID,Gustafsson Jan-Åke12

Affiliation:

1. Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA

2. Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden

Abstract

Liver X receptors (LXRα and LXRβ) are oxysterol-activated nuclear receptors that play key roles in cholesterol homeostasis, the central nervous system, and the immune system. We have previously reported that LXRαβ-deficient mice are more susceptible to dextran sodium sulfate (DSS)-induced colitis than their WT littermates, and that an LXR agonist protects against colitis in mice mainly via the regulation of the immune system in the gut. We now report that both LXRα and LXRβ are expressed in the colonic epithelium and that in aging LXRαβ−/− mice there is a reduction in the intensity of goblet cells, mucin (MUC2), TFF3, and estrogen receptor β (ERβ) levels. The cytoplasmic compartment of the surface epithelial cells was markedly reduced and there was a massive invasion of macrophages in the lamina propria. The expression and localization of β-catenin, α-catenin, and E-cadherin were not changed, but the shrinkage of the cytoplasm led to an appearance of an increase in staining. In the colonic epithelium there was a reduction in the expression of plectin, a hemidesmosome protein whose loss in mice leads to spontaneous colitis, ELOVL1, a fatty acid elongase protein coding gene whose overexpression is found in colorectal cancer, and non-neuronal choline acetyltransferase (ChAT) involved in the regulation of epithelial cell adhesion. We conclude that in aging LXRαβ−/− mice, the phenotype in the colon is due to loss of ERβ expression.

Funder

Swedish Research Council

Robert A. Welch Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3