Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies

Author:

Palumbo Gaetano1ORCID,Święch Dominika1ORCID,Górny Marcin2ORCID

Affiliation:

1. Department of Chemistry and Corrosion of Metals, Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland

2. Department of Cast Alloys and Composites Engineering, Faculty of Foundry Engineering, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Krakow, Poland

Abstract

In this study, the corrosion inhibition performance of the natural polysaccharide guar gum (GG) for N80 carbon steel in CO2-saturated saline solution at different temperatures and immersion times was investigated by weight loss and electrochemical measurements. The results have revealed that GG showed good inhibition performance at lower and higher temperatures. The inhibition efficiency observed via weight loss measurements reached 76.16 and 63.19% with 0.4 g L−1 of GG, at 25 and 50 °C, respectively. The inhibition efficiency of GG increased as the inhibitor concentration and immersion time increased but decreased with increasing temperature. EIS measurements have shown that, even after prolonged exposure, GG was still able to protect the metal surface. Potentiodynamic measurements showed the mixed-type nature of GG inhibitive action. The Temkin and Dubinin–Radushkevich adsorption isotherm models give accurate fitting of the estimated data, and the calculated parameters indicated that the adsorption of GG occurred mainly via an electrostatic or physical adsorption process. The associated activation energy (Ea) and the heat of adsorption (Qa) supported the physical adsorption nature of GG. FTIR analysis was used to explain the adsorption interaction between the inhibitor and the N80 carbon steel surface. SEM-EDS and AFM confirmed the adsorption of GG and the formation of an adsorptive layer of GG on the metal surface.

Funder

National Science Centre, Poland

AGH University of Science and Technology, Faculty of Foundry Engineering

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3