Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization

Author:

Méndez-Líter Juan A.1,de Eugenio Laura I.1,Nieto-Domínguez Manuel2ORCID,Prieto Alicia1ORCID,Martínez María Jesús1ORCID

Affiliation:

1. Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain

2. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and β-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a β-xylosidase already characterized from the same fungus.

Funder

MICIU/AEI/FEDER

Comunidad de Madrid

Recovery and Resilience Facility of the European Union

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Hydrolysis of lignocellulosic materials for ethanol production: A review;Sun;Bioresour. Technol.,2002

2. Plant physiology. 3rd edn;Lazar;Ann. Bot.,2003

3. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review;Prieto;Bioresour. Technol.,2021

4. Hemicelluloses;Scheller;Annu. Rev. Plant Biol.,2010

5. Ebringerová, A. (2005). Macromolecular Symposia, Wiley-VCH Verlag.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications;World Journal of Microbiology and Biotechnology;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3